Reg. No. :

Seventh Semester B.Tech. Degree Examination, November 2015 (2008 Scheme) 08.702 DESIGN AND ANALYSIS OF ALGORITHMS (R)

Time: 3 Hours

TRIVANDRUM-11

PART-A

Answer all questions. Each question carries 4 marks.

- 1. Explain the significance of using order notations in analysis of algorithms.
- 2. Show that the recurrence T(n) = T(n-1) + 1 is asymptotically bound by $\theta(n)$.
- 3. Is an array that is in sorted order, a min-heap? Justify.
- 4. What value of 'q' does the partition algorithm return when all elements in the array A[p. . r] have the same value?
- 5. Given an adjacency list representation of a directed graph, how long does it take to compute the out degree of every vertex? How long does it take to compute the indegrees?
- 6. What is a minimum spanning tree ? Which data structure is used by Prim's algorithm to find the MST?
- 7. Explain the properties of a red black tree.
- 8. What are polynomial time computable algorithms?
- 9. What are the characteristic properties possessed by problems solved using greedy technique?
- Explain branch and bound technique of problem solving.

(10×4=40 Marks)

10

7

10

10

10

10

5

PART-B

Answer one question from each Module. All questions carry equal marks.

MODULE-I

- 11. a) Draw the recursion tree for $T(n) = 4T(\lfloor \frac{n}{2} \rfloor) + c_n$ where c is a constant and provide a tight asymptotic bound on its solution.
 - b) Use iteration to solve T(n) = T(n-a) + T(a) + n where $a \ge 1$ is a constant. 10
- 12. a) Illustrate the operation of Max-heapify (A, 3) on A = $\langle 27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0 \rangle$
 - b) Illustrate the operation of Quicksort on the array $A = \langle 5, 13, 2, 25, 7, 17, 20, 8, 4 \rangle.$

MODULE-II

- 13. a) Show the results of inserting the keys F, S, Q, K, C, L, H, T, V, W, M, R, N, P in order into an empty B-Tree.
 - Explain Dijkstra's algorithm to find the shortest path with the help of an example.

OF

- a) Discuss about the different cases to be considered for a red black tree insertion.
 - b) Illustrate DFS algorithm on a complete graph with an example.

MODULE - III

- 15. a) Solve TSP on 5 cities by branch and bound.
 - b) Discuss about the characteristics of dynamic programming.

OF

16. a) Show how the following matrices would be multiplied using Strassen's algorithm

$$A = \begin{bmatrix} 7 & 9 \\ 2 & 5 \end{bmatrix} B = \begin{bmatrix} 3 & 2 \\ 6 & 5 \end{bmatrix}.$$

b) Discuss greedy approach to solve fractional knapsack problem.

10

10

O.T